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Dynamical interpretation of a classical complex free energy 
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Department of Physics, University of Illinois at Urbana-Champaign, 11 10 West Green 
Street, Urbana, IL  61801, USA 

Received 11 December 1984 

Abstract. Using a functional Fokker-Planck equation for a scalar b4 model, it is shown 
that the initial decay rate out of a metastable state after an instantaneous quench to an 
unstable situation is proportional to the corresponding imaginary part of the free energy, 
as calculated by Langer. 

1. Introduction 

Since Langer’s fundamental work on the behaviour of the free energy at first-order 
phase transitions (Langer 1967) and on thermally activated decay in systems with many 
degrees of freedom (Langer 1969), there has been considerable interest in the question 
of whether there exists a sufficiently general connection between the analytic continu- 
ation of the equilibrium free energy and the dynamics of metastability (Newman and 
Schulman 1980). This interest has been increasing, in particular after instanton type 
calculations (Coleman 1977) had been applied to discuss the quantum behaviour of 
macroscopic order parameter fields (Caldeira and Leggett 1981). In quantum 
mechanics the relation between the decay rate of a pure state and the imaginary part 
Im Eo of its energy Eo is well established, and using the Feynman-Kac formula one 
may calculate Im Eo by an analytic continuation of the corresponding equilibrium 
density matrix in the zero temperature limit. This method is essentially based on the 
fact that the ground-state energy of a d-dimensional quantum system can always be 
represented as the free energy of an associated classical problem in d + 1 dimensions. 
Thus the quantum decay rate (2 /h)  Im Eo becomes equivalent to the imaginary part 
of the corresponding free energy$. 

Starting from a classical partition function alone, however, does not specify a 
corresponding time evolution, and one has to introduce a consistent dynamical model 
in addition. Thus the situation in this case is much less clear, which is even more true, 
if quantum and classical fluctuations are both present (Affleck 1981). In accordance 
with Langer’s original treatment, we will restrict ourselves to rhe purely classical case, 
with a Fokker-Planck description of the dynamics. The problem is then to determine 
the transition rate for a thermally activated process which proceeds via a saddle 
point-usually called the critical droplet-in a multidimensional space. In a steady 

t On leave of absence from Institut fur Theoretische Physik, Universitat Hamburg, West Germany. 
3 This has recently been demonstrated in the case of a dissipative two-level system and its corresponding 
I D  Ising model with l / r 2  interaction by Fisher and Dorsey (1985). 
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state situation, in which the metastable state is replenished continuously, the corre- 
sponding constant probability current can be written as the product of the initial growth 
rate of the unstable mode at the saddle point, times an  equilibrium factor, which 
coincides with a n  appropriately defined imaginary part of the free energy of the 
corresponding metastable configuration (Langer 1969). In a usual nucleation experi- 
ment however, one generally considers a situation in which an initially stable equili- 
brium relaxes to a new one after a sudden change in the effective potential, which 
changes the original configuration into a metastable one. It will be shown in the present 
work, that for the specific example of a 44 model, the initial decay rate after an  
instantaneous quench to a metastable situation is again directly proportional to the 
corresponding Im F as defined by Langer. Similar to the steady state result, the 
prefactor depends on the kinetic coefficient in the underlying Fokker-Planck equation 
and on properties of the unstable mode. In the limit of a small ordering field however, 
it is much larger than the critical droplet’s growth rate, which determines the steady 
state prefactor. 

2. Initial decay rate and relation to Im F 

For the sake of simplicity let us first consider a one-dimensional potential which at 
t = O  is suddenly changed from V-(q )  to V+(q)  = V - ( q ) + A V ( q )  (see figure 1). In the 
large damping limit, the probability distribution p ( q ,  t )  for the coordinate q satisfies 
a kinetic equation 

M q ,  t )  = &q, 1) 

where the operator i has the Smoluchowski form 

i p  = ra,(pa,v+ag) ( 2 )  
with a kinetic coefficient inversely proportional to the damping (the potential V and  
also the action S below are measured in units of k g T ) .  The short-time behaviour of 
the relaxation to the new equilibrium distribution in V+(q)  may be characterised by 

Figure 1. The sudden change in the potential from V- to V ,  such that the well A becomes 
metastable. 
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the initial decay rate 

T - l ( o )  := - ~ # A ( t ) / p A ( r ) i r = O  (3) 

where PA( t )  = 5, p ( q ,  t )  dq is the population in the metastable well A to the left of the 
maximum in V+(q).  Now it is easy to show, that T - ’ ( O ) / r  can be expressed only by 
A V  and pu;ely equilibrium quantities. The change in t,he potential induces a change 
L- + L,  = L- + AL in the evolution operato; and since L-poA= 0 for the initial distribu- 
tion p o  - exp(- V-) we have a r p A ( 0 )  = 5, A L p ,  dq. Since AL is a complete derivative, 
d,p,(O) is determined alone by the properties of the initial equili6rium distribution at 
the boundary of the metastable well. Taking this to be at 4 = 0, we obtain 

A A  

Y ’ ( O ) =  - r A V ’ ( q  =O)po(q  = O )  (4) 

if the initial configuration is fully concentrated in A such that pA(0)  = 1. 7-’(0) is thus 
proportional to the initial density at the boundary times the corresponding force due 
to AV.  

This intuitive result has now a straightforward generalisation to a 44 model below 
T, with a Ginzburg-Landau action 

S =  d 3 ~ [ f ( V 4 ) 2 - $ m 2 4 2 + a g 4 4 -  h 4 ]  i 
and a dynamics given by the functional Fokker-Planck equation 

( 5 )  

(Hohenberg and Halperin (1977). In their notation we are considering model A. In 
order to obtain model B for a conserved order parameter 4, the kinetic coefficient r 
has to be replaced by MV’.) In order to apply the concept of an initial decay rate as 
in (3), for a situation where the sign of the magnetic field is suddenly reversed from 
- h to h > 0 at t = 0, it is necessary to generalise the notion of the metastable region 
A to the infinite-dimensional space of possible order parameter realisations 4 ( x ) .  In 
analogy to the one-dimensional case, where the transition point to the new stable 
region is determined by a,V+ = 0, the division between stable and metastable configur- 
ations 4 now corresponds to a non-trivial solution of SS, = 0 or 

(7) 

Under the boundary conditions +(Ixi .+ E) = 4- and &(/XI .+ 0) = 4+ equation ( 7 )  has 
a localised and rotation invariant solution 6 in the form of a critical droplet, with a 
finite action s compared to the metastable solution 4 = 4- = constant (4+ = * m g - ” 2 +  
h / 2 m 2  for small h ) .  This solution is unstable with respect to scale transformations 
x .+ Ax and marginallyAStable with respect to a shift of the origin, i.e. the second-order 
fluctuation operator M defined by 

S(&+Sb,)  = s+i S ~ ( X ) G S ~ ( X )  d3x+.  , . (8) 

has precisely one negative eigenvalue A. < 0 and d = 3 zero eigenvalues A l , z , 3  = 0 
corresponding to growth and translation of the droplet (Langer 1967, for a rigorous 
proof see Coleman et a1 1978). Expanding 

V24 = - m 2 4  + g43 - h. 

I 
W ( X )  =c Q n 4 , ( X )  (9) 

n 
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into a complete orthonormal set of eigenfunctions 4,, of M, the metastable region A 
may be characterised by the condition a,<O and an appropriate measure in function 
space is 0 4  := II,da,. The reversal of the magnetic field at t = 0 induces a change AS 
in the action such that G(AS)/S4 = -2h. Since A&,= -2rh Jd3x6po/64 is again a 
complete derivative, the generalised Gauss theorem 5, D46p,/ 84 = I,, Ds4p0 can be 
used to write the initial change of the population in A as a surface integral over the 
boundary aA of the domain of metastability. In order to obtain an explicit form for 
the measure D&J on aA, we use 

The a, integration in 5, D4 can then be performed and gives 

-atpA(0)=2rhC0 danpO({aO=O, an,,}) 

where 

is a constant (CO> 0 since a,> 0 corresponds to droplet growth only if 4, > 0). Due 
to the vanishing eigenvalues A1,2,3 =-0, the expression ( 1 1 )  is not properly defined and 
J da,da2da3 has to be replaced by ( S)3 i2  V, which is the subvolume of 4 space spanned 
by allowing the critical droplet to occur at any point in the physical volume (Langer 
1967). Thus the nucleation rate becomes an extensive quantity as it should be. Since 
a, is fixed to zero on dA, there is no integration over the unstable mode itself, and 
therefore no analytic continuation is involved in determining T - ’ (  0). 

In a Gaussian approximation the initial distribution on aA is 

with a normalisation constant N and A,, > 0 for n 2 4. Since po  is mainly concentrated 
around 4 = &, pA(0)  may be calculated by using the corresponding quadratic approxi- 
mation around &, which has purely positive eigenvalues A!,‘“. The initial decay rate 
(3) is then well defined and independent of N. Comparing the result with Langer’s 
expression 

for the corresponding imaginary part of the free energy (II‘ means that the three zero 
eigenvalues A, ,2 ,3  are omitted), one finally obtains the relation 

(15)  

which is our central result. In principle (15 )  holds independent of whether the order 
parameter is purely relaxing or conserved. However, in the latter case we have r + MV2 
and the factor 4rh CO is replaced by 

7-’(0) = 4 r h  C o ( ~ A o / / Z ~ ) ’ ’ z  Im F 

2M J V 2 ( 4 , ( x ) A h ( x ) )  d3x 
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which vanishes, unless the change A h ( x )  in the magnetic field is such as to produce 
an initial non-zero diffusion field for the critical droplet. 

Concerning the meaning of (14) and its real part (which is essentially the free 
energy of the metastable phase for h < 0) in an equilibrium context, it should be pointed 
out, that in a strict sense the free energy of a 44 model below T, with h>O but 
boundary conditions corresponding to h < 0 is a perfectly well defined and real quantity. 
It differs from the free energy of the ordered state with h > 0 only by the surface free 
energy, which becomes negligible in the thermodynamic limit. In fact the actual F (  h )  
is expected to have a cut along the imaginary h axis (Barnsley et a1 1979) and (14) 
should therefore be interpreted only dynamically, either in the manner of Langer's 
original work, or in the one given above. 

3. Behaviour in the limit h + 0 and discussion 

In order to explicitly evaluate (15), we, first have to determine 6 and solve the 
corresponding eigenvalue problem for M. In the limit h + 0 this has been done by 
Langer (1967) and more recently by Giinther et a1 (1980), so that we may only briefly 
sketch the calculation here. 4 is found by a variational ansatz in the form of a Bloch 
wall of width m-',  whose optimal radius a - h-' is large compared to m-l if h += 0. 
This gives (Giinther et a1 1980) 

with a numerical factor B of order unity. A is now a Schrodinger type operator with 
a central symmetric potential, and the infinite product of eigenvalue ratios in (14) may 
generally be written as a Fredholm determinant or Jost function (Gottfried 1966) 

de t ( f i -z )  cc 

det( go - z )  I = ~  
D(z) = = D,(Z)2'+' 

Defining a 'Hamiltonian' H = - V 2 +  u ( r )  with an attractive potential 

u ( r )  = 3g(&'- 4 ! )  (19) 

which vyishes  at infinity, we have det A / d e t  fdo =,D(z = - 2 m 2 )  in the limit h + 0, 
where M O  = -V2+2m2. The three zero modes of M due to translation invariance 
correspond to a 1 = 1 bound state of U at energy -2m2, which shows up as a zero in 
the Jost function. In terms of a dimensionless wavevector 7 > 0 such that z = - (? /a ) '  
this means 

and the infinite product in (14) may be written as 

In the thin wall limit ma >> 1, u ( r )  may be replaced by an equivalent 6 potential 
u ( r )  = -A6( r - a )  at the droplet radius, whose strength A is determined by the condition 
(20). This approximation is equivalent to the so-called drumhead model (Diehl et a1 
1980), which neglects angular dependent variations in the domain wall thickness, but 
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retains the relevant low energy modes, which determine the singularity of the prefactor 
in Im F ( h )  (Giinther et a1 1980). The exact Jost function for the d = 3 S shell potential 
at purely imaginary momentum is (Gottfried 1966) 

Q ( v )  = 1 -Aa11+1/2(77)K1+1/2(77) (22) 

and (20) gives A ~ = 2 7 7 , + 2 / 7 ~ +  . . .  so that 

Since the continuum model (5) only describes variations of 4(x)  on a scale larger 
than m-’, the summation in (21) has to be cut off at an  I, of order ma. This finally 
leads to (Giinther et a1 1980) 

where A is of order unity. The s-wave bound state in the S potential has the form 

r-’(sinh T o r l a )  exp(-V0) f o r r < a  
for r >  a 4 0 - {  r - l  exp( - q 0 r /  a )  sinh q0 

where qo = Aa/2 is the corresponding wavevector, fulfilling Do( 770) = 0. The constant 
CO is then 

CO = 2(4.rra3/ T ~ ) ’ ’ ~  (26) 

T - ’ ( O )  - h-4’3 exp(-constant/h’), (27) 

and since lAol = a-’ we finally obtain a behaviour for the initial decay rate like 

This is different from Langer’s steady state calculation, which leads to a nucleation 
rate (Langer 1969) 

T;’= ( K / T )  Im F (28) 

with K = T/Ao/ - h2  being the growth rate of the critical droplet. The prefactor in this 
case is thus proportional to h-1 /3 ,  which in the limit h+O is much smaller than that 
of the initial decay rate (27). The difference is due to the fact that the prefactor in 
T - ’ ( O )  is determined by the initial force SAS/S+ - h at the boundary instead of the 
droplet growth rate K - h’. 

In conclusion, we have shown within a time dependent Ginzburg-Landau model, 
that the initial decay rate out of a metastable state after a sudden change in the magnetic 
field is proportional to the corresponding Im F. In accordance with Langer’s original 
idea, the imaginary part of the free energy is defined by calculating the partition 
function in a Gaussian approximation around the metastable configuration and 
becomes meaningful only in a non-equilibrium context. It is related to the short time 
nucleation stage of the dynamics, but does not give information about the kinetics of 
growth or coarsening. The established connection between the dynamics and quasi- 
equilibrium properties may be traced back to the fact that T - ’ ( O ) / r  could be expressed 
only in terms of the initial equilibrium distribution and the change in the external 
parameters. Generally however, no a priori connection between Im F and the classical 
dynamics can be expected, since different time evolutions may lead to the same 
equilibrium state. It is only aposferiori by comparing the result of a particular dynamical 
model with Im F, that such a relation may be shown. 
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